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RESEARCH MEMORANDUM

THEORETICAL INVESTIGATION OF LAMINAR HEAT TRANSFER ON

YAWED INFINITE CYLINDERS IN SUPERSONIC FLOW AND
A COMPARISON WITH EXPERIMENTAL DATA

By Ivan E. Beckwith
SUMMARY

A theoretical method is presented for the calculation of heat trans-
fer in the laminasr boundary leyer on yawed Infinite cylinders in compres-
sible flow with a Prandtl number near unity. The method may be applied
to a cylinder of arbitrary cross section and arbitrary chordwise wall-
temperature distribution. General expressions are derived for the heat
transfer and recovery factor in the vicinity of the stegnation line. The
expression for the recovery factor and the chordwise velocity profile at
the stagnation line for zero heat transfer are in good agreement with the
results of other theoretical analyses.

.1

The method is applffaer-the calculation of local heat-transfer rates
on a yewed circular cylinder at a gtream Mach number of 6.9. Companison
of the results of this «#ctilaftion with some experimental data indlcates
good agreement for small yaw angles but at the larger yaw angles of 60°
or more the theoretica%&xapredicted heat transfer is sbout 40 percent less
than the measured values.

- = o -
INTRODUCTION

- .
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As flight speeds are increased, the problem of aerodynamic heating
becomes more acute and requires that every possible means be -investigated
for alleviating the heat transfer at critical locations on missile or
aircraft configurations. One such critical location is a sharp leading
edge or nose where the local heat transfer becomes very large because of
the thin boundary layer which has just begun to form. Appreciable reduc-
tions in heat transfer to the forward regions of wings and bodies may
therefore be obtained by rounding or blunting the leading edge or nose.
(Another advantage of a blunt entry section over a sharp section is that
heat may be removed more effectively from the blunt section by heat
conduction or internmal cooling). Recent theoretical and experimental
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investigations (refs. 1 to h) as well as earLy experimental results
(ref. 5) have indicated that further reductions in heat transfer to blunt
leading edges can be obtained by yawing or sweeping the wing.

Inspection of the leminar boundary-layer equations for a yawed
infinite cylinder in an incompressible flow with a Prandtl number of
unity and negligible viscous heating shows that both the chordwise flow
end the temperature distribution are not affected by yawing the cylinder
(ref. 1), that is, the temperature and chordwise velocity distributions
are independent of the spanwise flow component. The solution for this
case (ref. 2) then shows that the heat transfer decreases as the square
root of the cosine of the yaw angle. This decrease in heat transfer is
due to the increase in boundary-layer thickness which occurs at a given
point on the cylinder as the yaw angle is increased.

In a compressible flow the independence principle for the yawed,
infinite cylinder no longer applies since shear stresses assoclated with
the spanwise flow will affect the temperature distribution directly, as
well as affecting the chordwise velocity profiles through the resulting
density changes, (refs. 6 to 8). An analytic solution of the general
problem of heat transfer to yawed infinite cylinders in compressible flow
is at present virtually impossible so that recourse must be had to an
approximate solution such as can be obtained from a suitable extension
of the integral methods (refs. 9 to 12). The range of validity and
accuracy of a golution of this type cannot be determined without com-
parison with mathematically exact solutions or experimental data. As far
as 1s known, the only exact solution available for the compressible flow
problem is Crabtree's (ref. 8) in which therdifferential equations for
Prandtl number unity and zero heat transfer are solved in a linearized
form. ¥

The purpose of the present paper is to present & theoretical inves-
tigation of the compressible laminar boundary ldyer on yawed infinite
cylinders and to compare the results with some experimental data showing
the effect of yaw on the heat transfer to a gimulated leading edge
(ref. 3). The theoretical analysis is based on an integral method wherein
a linear viscosity temperature relation is used and the boundary leyer is
agssumed to have one thickness. The latter assumption simplifies the cal-
culations conslderably since the simultaneous solution of only two differ-
ential equations is required to obtalin the local heat-transfer rates. A
more general method would involve the simultaneous solution of three
differential equations; one for the thermal boundary-layer thickness, and
two more for the boundary-layer thicknesses corresponding to the chord-
wise and spanwise components of theé velocity boundary layer.
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SYMBOLS

b4 boundary-layer coordinate parallel to surface, normal to
. cylinder axis

y boundary-layer coordinate parallel to surface and cylinder axis

Z boundary-layer coordinate normal to cylinder surface

t time

p mass density

u veloeity in x-direction

v velocity in y-direction

w velocity in z-direction

P pressure

u dynamic viscosity

v kinematic viscosgity

h static enthalpy, cPT

k thermal conductivity

T static temperatﬁre, °Rr

T* stagnation temperature, °R

Te ) recovery temperature for local gy = 0‘

H stagnation enthalpy (eq. 6)

o Prandtl number, c_il‘-

Cp specific heat at constant pressure

R constant in equation of state for gases

n Dorodnitzyn variable feg..10) 4~

Midni
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p¥* local gtagnation density
A boundary-layer thickness in 17 coordinate system
"
= H - Hy = H- el
T =2 - " - CPTW, thermal -profile parameter
T* B - oply
S Sutherland constant
A chordwise velocity-profile parameter (eq. (15))
By, 132,‘133 .. coefficients in thermal profile (eq. (18))
8 momentum thickness in 17 coordinate system (eq. (22))
o% displacement thickness in 17 coordinate system (eq. (23))
O* thermal-profile parameter (eq. (26))
P energy-logss-profile parameter (eq. (27))
Tps Gps Gy« o - constants in expression for ¢ (eq. (28))
My local chordwise Mach number external to boundary layer
Q, local heat-transfer rate at wall (negative for heat
transfer to wall)
L characteristic dlmension of body
Uy velocity component normal to cylinder axis on stagnation
streamline ahead of cylinder
U, resultant velocity ahead of bow shock (flight velocity
' of cylinder)
Mo resultant Mach number ahead of bow shock
% = x/L

e
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Z,

¢

yaw angle of cylinder (measured from & line normal to
resultant stream direction)

function of N\ and £5L (eq. (43))
1o

chordwise component of Mach mumber on stagnation streamline
ahead of cylinder

pressure coefficient

diameter of circular cylinder

ratio of specific heats, 1.400 used throughout

local heat-transfer coefficient
average heat-transfer coefficient

pgUN L

Hg

reference Reynolds number,

computing parameters (eqs. (A3) and (Ak))

Subscripts:

1

local conditions external to boundary layer unless
otherwise noted

conditions at wall
conditions ahead of bow shock
conditions just behind normal bow shock

conditions external to boundary layer at stagnation line
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THEORY

Derivetion of the Integral Egquations

The boundary-layer equations for a three-dimensional flow are
obtained by application of the conventional boundary-layer assumptions
to the general equations governing the motion of a compressible, vis-
cous, heat-conducting gas (refs. 7 and 13). Two of these assumptions
which may be emphasized for the present application are (1) the boundary-
layer thickness is small compared with some characteristic dimension of
the body, and (2) the pressure gradient normal to the surface may be
neglected provided that the boundary-layer thickness is small compared
with the local radius of curvature of the surface. Thus, for example,
the boundary-layer equations are expected to be valid everywhere on a
circular cylinder except in a separated region provided that the stream
Reynolds number based on diameter (or radius of curvature of the

leading edge) is large.

The boundary-leyer equations for steady flow on an infinite yawed

cylinder are obtalned from the three-dimensional equations with gl =0
t

and g% = 0. The boundery-layer coordinate system used is defined by the
following sketch:

The equation of continuity is then

i("“-) +-—a%(pw>\e. 0. (1)

Do SN
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and the equations of motion in the b“;{-’ fﬁ;-f" d 2z-directions are
written as
Pl + it - gﬁ (%) - @
o2
0- 2 (%)

where 2z 1is normal to the surface. The erergy equation is written as

3\2  [ov\2
. (a—z) * (a) ®

Then, for convenience, a stagnation enthalpy is defined as

PU— + PW— = U—= +
oz

3, dh _ Jp _a_k@>+
x  d x

H=nh+ %; %? (6)

whereupon equations (2), (3), and (5) may be combined to yield

OH OH _ O (,0H _1\2 (,oh
pua—x pwaz oz ( Bz) " (U > oz ( Bz> ' M

for constant p and o. The chordwise pressure gradient ilmpressed on

the boundary layer is obtained from equation (2) evaluated outside the
boundary layer, that is, outside the region where viscous effects are
important, as

du : ;D' )
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dul

Py =" % (8)

which is-Bernoulli's equation. The equation of state for a perfect gas
is used throughout. =
Equations (2) and (7) are integrated across the boundary leyer (as

in ref. 11) and by using equations (1), (4), (8), and (9), together
with the Dorodnitzyn variable

n:J:;l"?u (10)

the results may be expressed as

o (P73 T BT B B ),

and
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for the boundary conditions at ¥

Il

O of uw=0, v=0, w=0, and

T=0 andat =1, u=vy, v=vy, t=1, and Sé— = 0 where A
™

is a universal boundary-layer thickness. Note that these equations are
of exactly the same form as the corresponding equations of reference 11
for two-dimensional flow. The spanwise component of the flow, however,
is involved directly in the density-ratio integral of equation (11) and
in the stagnation enthalpy integrals of equation (12) as will be shown

later. :

Velocity and Enthalpy Profiles

An approximate solution to equations (11) and (12) becomes possible
after specifying the velocity and enthalpy profiles. The chordwise
velocity profile will be described by the conventional fourth-degree

polynomial in 7% = 2. A fourth-degree polynomial is then used for the

spanwise velocity profile in order to satisfy the requirement that both
profiles must be of the same shape in the limiting case of a yawed flat
plate. The stagnation enthalpy profile will be expressed as a fifth-
degree polynomial which has resulted in acceptable engineering accuracy
for the heat transfer to an unyawed cylinder when T, < T, (ref. 11).

The coefficlents of all profiles are determined from specified conditions
at the edge of the boundary layer (1 = A) and at the wall (4 = 0) so that
the original equations of motion (egs. (1) to (7)), after being transformed
to the new varisble 1, are satisfied when evaluated at the wall.

The profile coefficients can be simplified if a viscosity-temperature
relation of the form

p = S¥p (13)
T
is assumed where the quantity gﬂ is a function only of x with
W

determined from the given values of T, by any acceptable method such as

Sutherland's viscosity-temperature equation. In the following derivation,
equation (13) is actually used in the vicinity of the wall only, and, as
will be seen, the final results in the form of a heat-transfer coefficient,
for example, are automatically expressed in terms of y, and k, -where

k, may also be evaluated from T, according to the best available infor-
mation. In the practical application of these results or for the purpose

-
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of comparison with experimental data, however, it is usually desirable
to use a reference viscogity and conductivity such as Moo and k.

Consequently, the problem arises as to the proper evaluation of the
ratios uw/pm or kw/kw. According to the above considerations, and

s8ince Mo, and k. .never enter the basic derivation, the viscosity

ratio should be obtained from the Sutherland equation which would be
written as-

b (B e

The conductivity ratio should also be determined from equally accurate
information.

The chordwise velocity profile may now be written as (ref. 11)

B o124 hew o D)2 4 2—;—1%*')3 + -6-—;—%*)4 (1k)

W

The relation for A is obtained from equation (2) (transformed to 1
and evaluated at 1 = 0) as
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P, [P1*\2 &
A= 'u—i<_pl—> = (15)
A

after also using equations (%), (8), (9), and (13).

Application of the same procedure to equation (3) shows that, at
1 =0,

i(i) -0 ‘ (16)

Hence, the required spanwlise profile can be written as

%i = g(n*) - 2(n*)5 + (n*)h (17)

which at 0¥ =1 gives

Comparison of equation (17) with equation (14) shows that, for a flat
plate (A = 0), the two profiles become identical as would be expected.
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The stagnation enthalpy profile is written as
BT 32(11*)2 + 133(11*)5 + 134@*)lL + 135(11*)5 (18)

where the boundary conditions at 7*¥ = 1 are taken as

ot
i
|_l

o/
ctt
1
o

g
*

with the result that

3\

By =5 - 4By - 3B, - 2B

> (19)

B

-4 4+ 3B; + 2B, + B3

The coefficient B, 1is derived from equation (7) which is transformed to

the x, 7 coordinates and evaluated at the wall (u =0, w=0). The
result can be expressed as

___;a%) ='l—cl:12+7\2 2, i ajl (20
= ={2 > . W<+ By )
2(51#21]:0 2ty ( 6>

after using equations (%), (9), and (13) and the definitions of H and
. The first derivatives of the velocity profiles are obtained from
equations (14) and (17).

(o c!!"! M 'h .l
e o e .~
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The third thermal profile coefficient B5 is derived from the

first derivative with respect to 1 of equation (7) (expressed in the
x, 1 coordinate system) evaluated at the wall. In order to obtain
ow

the final expression for B3, as given below, note that | — =0
nT]:O
and (?ﬂ> " =0 from equations (1) and (10), respectively. Also
X
7=0

equations (15) and (20) have been used to supply expressions for A2

2 2
and the quantity du + ov . The result may be written as
on o/ |3=0

- 3(1 - o)y (21)

aTy,
335_1_855 _ 9y 12)\+7\2UCPT_1E
o), T* P Tw%_‘;];

where derivatives of the velocity profiles from equations (1k4) and (17)
have been used where necessary. The coefficient B; in equation (18)

will be determined from the solution of the integral equations.

Expression of Profile Integrals in Terms of A and By

The various profile integrals in equations (11) and (12) can now be
evaluated in terms of A and B; which are the two basic parameters to

be determined from the simultaneous solution of these two equations.

Thus, from equation (14) and the definition of a momentum thickness
in the 17 coordinate system, there is obtained

1
8- | [w _u2\gw o 1 _L_iﬁ> oo
A J; (ul u12> i 315 (37 3 14k (22)

Similarly, a displecement thickness in the x, 1 plane (anelogous to
the displacement thickness in incompressible flow) is expressed as

e L o R
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&% _ u =36 -2
g - Bagx = 2
A fl ( u) s 120 (23)
0 1
Then from the definition of E and T and the relation % = o the
1
density integral may be expressed as

1 2
ﬁ-__idq*=?£_?l-]_é"ﬁ+ hor )
0 P ul Tl Tl* A QCPT]_A

<J.+—Ii]i>g+lf—fl< -12—>dﬂ* (2k)
2CPT1 A 2CPT1 0 2

Vi

by means of equations (22) and (23). The last integral on the right in
equation (24) becames by virtue of equation (17)

1
v 263
1 - ——\agp* = == 2
f< 2) 2 (25)

The integral expression %*-

in equation (24) is evaluated from equa-
tions (18) and (19) as

.A_.x-_z _— =g._l _-L _i—. "
~ J;l(l T)dn* 5 -5-}31 1532 60B5 (26)

vhere equations (20) and .(21) are used to express Bo and Bz as

functions of A. The integral term in equation (12) is evaluated in
the same way and yields
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% i—(l—%)dﬁ=a0+%‘a4/+ (“l"“%“‘j)Bl"'

0

("‘2 + %(16)32 + (crg + 265a.7) B3 | (27)

The values of the a's depend only on the type of thermal profile used
and are listed below for the fifth-degree profile used here.

ay = 0.38175 o, = 0.04484 ‘

a; = -0.14603 ag = -0.01230

> : (28)
-0.00357

i

an = -0.053L7 ag

-0.00079

"

(1.3 = -0 .01389 (17

/

Equations (11) and (12) may now be written in a more convenient form
by introducing equations (22), (23), (24), (25), (26), and (27); thus,

: (29)

and

f,(L3.2 )cP - v g (30)
= 1
ax <P1' dax T ¥ dax d@lﬁeula




. L

where

The external spanwise velocity v .may be expressed as a function of

1
temperature and the local chordwise Mach number M; as

2 .*
"1 =_TL.-<1+——]:I\47; f) | (31)

In principle, equations (29) and (30) can now be solved for A and
By by & suitable numerical procedure for any given distribution of u;

and T,,. Before the computation can be started, however, the initial
velues and first derivatives at x =0 of A and B; must be known.
(See appendix.)

General Expression for the Local Heat Transfer

The local convective heat-transfer rate 1s defined as
_ oT
- 53]
oz /o

Introducing -the transformation to n* and using equations (15) and (18)
and the definition of +% result in

0, = -, (1% - TW)<E‘1 i>1/2 B (32)

A hest-transfer parameter which depends only on the yaw angle for given
stream conditions and wall temperature is then obtained from equation (32)
as _— Lt

!lrl‘gmmjvsg g ) ,



3z

NACA RM I55F09 7

u /2
B = |cos B(i_ —1>ﬂ 2 (33)

psUNsL dx Ung/Pg ﬁ
ke (T - T¥)

My cos B

-

where for a symmetrical cylinder with detached bow wave

pBUNS _

cos B © ®

This latter relation would be only approximate for an asymmetrical
cylinder. -

Application to Stagnation Type of Flow

Initial values of A and By .- In the vicinity of the stagnation

line which occurs on a blunt leading edge for both the yawed and unyawed
cylinder, uy approaches O as x approaches O. Then, in order to avoid

infinite values of % and % at x = 0, the two following conditions,

as obtained from equations (29) and (30), must be satisfied at x = O:

2g+g+ﬂ<&_l>A_*+@<T_l’i_l>_T_ww=o (34)

A A Ty \Ty* A 630\Ty, T, 6A
and
T
2 _1Tv B _ 0 . (35)
A o TlO A
a

where equation (15) has been used to supply a relation between A2 , -%,
and A. The expressions for %, %t, éAi’ and % are introduced ipto .

equations (34) and (35) from equations (22), (23), (26), and (27) with

NNy

L
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B, and Bz (from equations (20) and (21)) evaluated at x = 0. The
parameter B; may then be eliminated between equations (34) and (35)

and the following quadratic for T&~ results:

L ¥ _
50)\(1 - c)(a,g + %@6)<T—1— - ) =0 (36)

where for u =0

~

2 7-552

= (37)
Tlo 2cpT]-O 1+ —;—]'Mmz cos? B

since
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and

Then, for given values of M_ and B, equation (36) is solved for L
1
0
as a function of A. Typical results for this calculation are shown in
figure 1 for various values of le/Tlo. The corresponding values of By

may be found from equation (35) as

T* - Tlo
IR L et G i v N
L Ty 1 N 2“5
mg o (2 E9)

where equations (20), (21), and (27) evaluated at x = O have been used
to obtain <9.
A

Recovery temperature and heat-transfer coefficient at x = 0.- For
the condition of zero heat transfer, q. =0 and the wall temperature T

equals the recovery temperature T,. Combining equations (38) and (32)
and using these conditions give an expression for T, which is

ap + Dug
T, = Ty% + L(L - c)—-—i—(’l‘l* ; T]_O> (39)

ag + Zou

Then defining a recovery factor r in terms of the local temperature
outside the boundary layer results in
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(40)

which gives for values of o near unity r ~ Jo since equation (40) is
almost independent of A. (Actually, for zero heat transfer the value
of A must satisfy equations (39) and (36) with T, = To.) This value

of the recovery factor is in good agreement with the results of an exact
analysis by Schuh (ref. 1k).

A heat-transfer parameter using the conventional definition for the
heat-transfer coefficilent

= — (k1)

may now be formed by substituting equations (38) amnd (39) into equa-
tion (33) so that

A, -1/2
= Jeos 5 d(_ig uls>p (ao +Z u)(k) (12)
Uy./ P w
ky 'I'lo 0}7\ (al * %mj

where all quantities are evaluated at x = 0. It 'may be noted that this
relation is- expected to apply in the vicinity of the stagnation line for

dB
an isothermal cylinder since (QL) =0 and (——}) = 0 as shown
x=0 x=0

in the eppendix and 1lim — —_— . The function

(R e

Tio _T_Tii_(a“%qﬁ)
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appearing in equation (42) has been computed with o = 0.7 for a large
range of Tl*/Tlo and the results are plotted against Tw/Tlo in fig-

ure 2. This figure shows that, regardless of the values of M_ and B,
the function F depends almost entirely on Tw/Tlo where

7 - 2
T _ Ty 1+ Lo
Tlo T 4 Z——é—lea cos2 B

(14)

from equation (37). Thus, & numerical expression for F as a function

lIl '

of El*’ M,, and B could be used to give a universal correlation for
1

the heat transfer along the stagnation line. Such an expression for

g =0.70 1is

-0.3
FA, Ty ) o 0.84 T - 0.4 (45)
T1, Tlo .

with a maximum error of about 4 percent for 2.5 >--5'I- > 0.10. (See

fig. 2.) The resulting correlation parameter from equations (42), (L44)
and (45) is then

PaUeol + —M7 - L ‘:2 cos? B
kw,/ e 2

vhich is a function of the yaw angle B, the stream Mach number M., and
the wall-to-stagnation-temperasture ratio TW/T]_*. The quantity p]_0 /ps

P 1+ -——ley — 2 -0-3
__EL_.—_- cos B-d:i—io-o& Ty 2 - 0.4
ax UNs Pg Ty * 1

(16)

depends on the chordwise component of the Mach number just behind the
ghock (MNS) according to the isentropic relation

Nl et
L A e T o




22 hm NACA RM LS5FO9

1
p_;? = (]. + 7—;'1MNBE>7_1 (47)

It should be noted at this point that by analogy with the results of
reference 11 equation (46) is expected to underestimate the heat transfer
coefficient by as much as 10 to 30 percent when T, > Te (see rig. 3,
ref. 11).

Application to a-circulaer cylinder.- The veloclty-gradient parameter

in equation (46) is evaluated from a modified Newtonian type pressure
coefficient (ref. 15) which is written for a circular cylinder as

D, -D P15 - P

CP= 1 ca____ :LO wcosa(al)
ipua Lpue D
2@(0 20000

where D 1is the cylinder dismeter. This equation modifies the usual
expression for the Newtonian pressure coefficient (ref. 16) so that the
correct pressure coefficient is obtained at the stagnation line. An
analogous equation may be easily derived for any other cross-sectional

shape. Differentiating the equation for a circular cylinder twice with
respect to x =and evaluating at x =0 give

—3 = 8oy, - 2.) (48)

Bernoulli's equation (8) requires that

o |2
(‘ﬂ) 1 (49)
0\axz Pl z
X—> ax 0 d_x2 %x=0
hence, from equation (48),
/2

ax x=0~" |’ plo
!“i 2 .
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or introducing the chordwise velocity UN behind the shock gives
8
1/2
T
1o
4 M) _lgh - Pe\Ts (50)
ax B U 2
B/ x=0 1o 7Mﬁs

This relation has been plotted against the crossflow Mach num~

ber MN =M, cos B In figure 3 where it 1s compared with some experi-
[=e]

mental results on cylinders. The experimentsl values shown are the

results of some previously unpublished data obtained in the Gas Dynamic

Branch of the Langley Laboratory. The length of the vertical line
through the data points corresponds to the maximum experimental error.

Chordwise velocity profile at the stagnation line for zero heat
transfer.- As an indication of the accuracy of the present method for the
condition of zero heat transfer, the chordwise velocity profile at x =0
is compared with the results of Crabtree's linearized solution of the
same problem (ref. 8). The chordwise profile given by equation (14) is
transformed back to the z-plane by means of the relation

T *
1 9w Lo = Eli am*
My & Ti¥  Jo

(51)

which is the inverse of equation (10) combined with the expression for A

* %
from equation (15) evaluated for T, = T;* and e I corresponding

Mg

to the conditions of zero heat transfer, o = 1, and the viscosity-
temperature relation of reference 8. The density ratio in the above
equation, for these conditions, is written as
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p* ) pr¥ |Ty* [T l> L(n%)2 _ 8 4
s <Tlo [ucey? - 8 +

K1) + b(p) - ()T + ()9

from the definitions of H and T and equations (4), (9), (17), and
(37). Inserting this density ratio In the first equation and integrating
gives the final required relation between 2z and 7*. The value of A
required in equations (14) and (51) was obtained from equation (36) for
these same conditions and is 7.249.

The results of this calculation for a spanwise Mach number of unity
are shown in figure 4 where u/ul is plotted sgainst the distance param-
. 1/2
eter [— L z. The reasonable agreement between the present method
dx Vlo .
and Crabtree's more exact analysis indicates that the compressibility

effects, in this particular case, are predicted satisfactorily by the
approximate integral solution.

COMPARISON OF THEORY WITH EXPERIMENTAL DATA

The experimental data of reference 3 are representative of an average
heat-transfer rate per unit area or, alternately, the total heat-transfer
rate for the forward half of a circular cylinder. A dimensionless param-

h .
eter of the form ————igl——- vas found to correlate the data for all yaw
P, UD
8
Mg
angles as shown in reference 3. The theoretical analysis applied to the

local heat-transfer coefficient at the stagnation line yields for this
same parameter the expression

¢ k

y =L, 2 \O03 '
oD ‘/h cos B E%(i.).p]_'o 0,8}4.61; 1+ ok (52)
ks pr:mD p's UNB ps %_ 1+ %hdwe cos2 B

8
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I
from equation (46) with k, = Eﬁks (cp and o being assumed constant)
8

and X = %. This has been plotted in the lower part of figure 5 for

M, = 6.9, T;*% = 12000 R and j&% = 0.2, 0.5, 0.8, corresponding approxi-
T
mately to the experimental test conditions (except for éﬁ% = 0.2). Com-
1

parison of the, theory with the data indicates that the measured effect of
yaw on the avérage or total heat transfer on a half-cylinder is consider-
ably less than the theoretically predicted effect on the local heat trans-
fer in the vicinity of the stagnation line. Thus, in order to obtain a
more complete comparison of the theory with experiment, it is necessary

to calculate from the theory the local heat transfer over the entire half-
cylinder. This calculation was carried out (according to a general proce-
dure outlined in the appendix) for two angles of yaw, B = 0° and B = 60°,

with M, = 6.9, aT;/ax =0, ETH; = 0.5 and 0.2, and T * = 1200° R.
1

. daM ’
The values of M; and 75% required in the calculation were obtained

from the faired curves shown in figure 6. These curves are based on the

experimental data included in this figure as well as values of ?£%>
. x=0

computed from the data shown in figure 3. The data points shown in fig-

ure 6 were computed directly from measured pressure data according to the
isentropic relation

r-1

2 _ 2 Plo 7
M© = == -1
y -1 Py

which, from inviscid theory for yawed infinite cylinders, would depend
only on the value of My . Consequently, since some of the data from
=9}

reference 15 show considerable scatter, some additional data (previously
unpublished) at a comparable MNm have been included. Then largely on

the basis of these data for My = 4.08 and the results of figure (3), the
o

erratic data for 0.5 > X > 0 could be overlooked and the curves shown
result.

4 F,o-
A S he

I

crgre m&fyﬁ‘ 55 )
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The results of the calculation are shown in figure T where the ratio
qw/(qw) 0 is plotted against X <for the two yaw angles and temperature
x - .

ratios considered. Note that the variation of qw/(qw) 0 with jaw angle
X
and temperature ratio is not very large and, for practical purposes, could

be considered a function of X only. Also included in figure T are the

9D
PooUooD
(T, - To¥)
My
from equation (33). The present method fails for A > 12 (see appendix)

which occurred in all cases before x = % as indicated in figure 7.

However, sufficient information was obtained to permit a reasonable

extrapolation to x = % which was used as the basis for the following

initial values of the basic theoretical parameter

calculations.

The average heat-transfer coefficient Ec was obtained by integra-

tion over x of the local computed values of q,, and then division by
(Tw - Te)i where T, was taken as the experimental value according to

the upper part of figure 5. These average heat-transfer coefficients were

: b

then used to compute the values of the parameter -EB | Foo which are
kE, Vo UD

shown in figure 8. (Accurate values of pw/Hw and kw/km were used in

computing this parameter). The experimental data in the form of this
same parameter (ref. 3) are also plotted in figure 8. Comparison of the
theoretical values with the experimental data reveals that the predicted
heat transfer is about 40 percent less than the experimental results for
a yaw angle of 60° whereas at a yaw angle of OQ the agreement is good.
The reasons for the discrepancy at large yaw angles are not yet clear;
however, at least part of the difference may be due to the configuration
of the test model used in reference 3. The finite length and end shape
would both tend to make the test cylinder aspproximate something between
an infinite yawed cylinder and a pointed body of revolution at angle of
attack so that the measured heat transfer could possibly depend on the
distance from the end as well as the yaw angle. Actually, in view of the
approximating assumptions involved in the theory (mainly, the universal
boundary-layer thickness and the linear viscosity relation) and the possi-
bility of certain indeterminate factors in the experiment (such as end
conditions and spanwise heat conduction), the agreement between theory
and experiment is probably as good as can be expected.

On the basis of the results of the present method at the stagnation
line (eq. 40) and Schuh's theoretical results (ref. 14), the value of a
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"ocal" recovery factor would be

Te - T3 -
= RN =

r =

o : (53)

This assumption cannot be compared directly with the experimental values
of reference 3 which represent an average recovery factor or equilibrium
,“temperature for the condition of zero total heat input to the entire half-
cylinder. However, an average equilibrium temperature may be defined and

evaluated from equation (53) with the result that

e
1+ 2;:—}M¢2 cos® B bomo
2 2 Lax (W)

y-Ll.,2 Tdo T

where equation (37) has been used and Tl/Tlo depends only on M; from
figure 6. This average Te/Tl*, which is a function -of the yaw angle only

for a given M,, is compared with the experimental values in the upper
part of figure 5. Although exact agreement between theory and experiment
is not expected since the local heat transfer is not everywhere zero in
the experiment, the use of equation (53) is confirmed in this case.

CONCLUSICNS

An integral method has been developed for the calculation of the
compressible laminar boundary layer on yawed infinite cylinders of arbi-
trary shape and with arbitrary wall temperature distribution. In general,
the method requires the numerical solution of two simultaneous ordinary
first-order differential equations. At the stagnation line of a blunt
cylinder the solution reduces to a set of algebraic equations which result
in a general correlation equation for the heat transfer in the vicinity of
the sbagnation line. An expression is also derived for the recovery fac-
tor which is in good agreement with an exact solution and some experimen-
tal data. The chordwise velocity profile at the stagnation line as com-
puted from the present method for zero heat transfer and a Prandtl number
of unity is also in good agreement with & more exact solution.
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The method 1s applied to the calculation of local heat-transfer
rates on the front part of a clircular cylinder at a stream Mach number
of 6.9 and angles of yaw of O° and 60°. The results of this calculation
indicate that the variation in local heat transfer around the surface
of the cylinder has very littie functional dependence on yaw angle or
wall temperature: Comparison of the calculations with some experimental
data, which shows the effect of yaw on the average heat transfer to a
simulated leading edge, glves good agreement at small yaw angles but at
a yaw angle of 60° the theoretical heat transfer is about 40 percent less
than the measured value. This discrepancy may be caused partly by inde-
terminate factors in the data as well as the simplifying assumptions
involved in the theory. .

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronsutics,
Langlex Field, Va., June 7, 1955.
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APPENDIX

CALCULATION PROCEDURE

General Method

Equations (29) and (30) are written in the form

2)51 + Eﬁ(_“iw_ _ 1)& +

2 1/)e m\ny 0
263 [T1* + 1= 542> _l_ul=gpw ”W3812+)\Q (A1)
6302 T up & p ¥ wp*L L 6 A ‘
and
a 13 % M) 2% )
Lrald T - T S ek e (42)

where the parameters Z and @ have been introduced so as to avoid the

d%u
use of the second veloclty derivative g' which is difficult to obtain
. dx
accurately from experimental data. The quantity RBL is the Reynolds

number at some reference point, for example, Jjust behind the bow shock on
a blunt cylinder. The computing parameters are defined as

=maft] - () ot e
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and

2 p. 2 Rg 2 .

=R (2) - (Pul M ?

g= RBL<L o *) PL dqu‘ A (A4)
dx

" where equation (15) has been used to provide the relation between A w=and

A. TFor convenience, all quantities needed for the solution of these
equations are listed below:

g. = L - L - ?7\_
A 315 (37 3 1l (22)
% = 2____61;_07‘ (23)
&% _2 1y _ 1y _ L.
A3 §B1 15 2 603 (26)

(27)

(85)

(46)
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y -1, 2
Ty* _ Mo T¥ _ <1+ 7 }Mlz) T+ (a7)
L T Ty

where equation (37) has been used in the last expression. Equations (A5)
and (A6) are obtained from equations (20) and (21) with equation (31) used
where necessary. The simultaneous solution of equations (Al), (A2), (A3),
and (A4) for Z, A, ¢, and By can now be carried out by any suitable

grephical or numerical procedure. The values of u; (or Ml), T,, TI1%,

My, and B must be given. A typical numerical procedure is applied to
the same type of problem in reference 12.

Initial Values ,

Blunt leading edge.- In order to start the integration the values at
=0 of Z, N\, @, By, and their first derivatives must be known. For

a blunt cylinder the initial values of A and By are obtained from

equation (36) (or fig. 1) and equation (38). The corresponding values of
Z and ¢ may then be obtained from equations (A3) and (A4). For the

condition that %% and %% are finite at x = O on a blunt cylinder,

it can be shown from equations (29) and (30) that (%ﬁ) =0 and

equations (A3) and (Ak), it follows that (42 _0 eana (¥ = 0.
ax/x-0 ax /x-0

2
(G—Jil-) - 0 provided that ﬂ) =0 and (iﬂ—w-> = 0. Then from
x=0 x=0 x=0

du
Sharp leading edge with 'é;Tl # 0.- At a sharp leading edge A = 0

vhich requires that (A),.g = O from equation (15). Hence (Z)y_g =0
and ($),_o = O from equations (A3) and (Ak).

Substitution of the values of A and dA/dx from equation (15)
into equation (29) and setting A = 0 result in

MMM

. k.,l
_— »\ 1‘}(




32 | 3N VST NACA KM L55FO9

(@) _1260(Tw 1 W) (48)
X/jx=0 3T \Ipw &/ ,

The required expression for (g%) is then obtained from equation (A})
x=0

after using equation (15), setting A = O, and inserting.equation (A8)
which gives

az)  _ 148 (WPw)xo
(di)x=o 315 e, * - (9

where for a sharp leading edge the quantity RSL would be designated as
*L

2 ()

p.l* lx=0

The initial value of By 1s obtained as

- 6300 b -1
s 37 - 6300a1[%0 + (1 G)Tl* - T;]x=o (820)

by substituting the values of A and da/dx from equation (15) and QAA
from equation (27) into equation (30) and setting A = 0. The required
values of B, and Bz are evaluated from equations (A5) and (A6) with

A =0. It is of interest to note that, for q, =0, By =0 from equa-
tion (33), and then equation (A10) reduces to equation (40) with A = O.

The initial value of gg 1s obtained by using the derivative of
equation (15) in the derivative of equation (A4) and setting A = O. The

result is
g\ _ 57| P ﬂ)a
aX/x=0 315 I *py*\ o

x=0



NACA RM L55F09

35

after using equations (A8) and (A10). The expression for (%§L> is
x=0

too lengthy to include here, particularly since this expression, although
convenient, is not essential to the integration procedure.

Sample Problem

The present method is applied to the calculation of local heat-
transfer rates on a circular cylinder at a stream Mach number of 6.9,

am,
—Y -0, B =0°and 60° and Tv _ 0.2 and 0.5. Typical results of
dx T ¥

this calculation are shown in figure 9 where 27, A, @, and By are

plotted against X. Note that in all cases A goes to 12 at some value of

$< X (¥ =% corresponds to 90° back on the cylinder| as shown in fig-

L b
ure 9(a). The calculation breaks down for A > 12 Dbecause of the incom-

patible values of Z and %% required to satisfy equations (A3) and

(Al) for A > 12. The physical reason for this is that the local chord-
wise velocity within the boundary layer tends to exceed the external

Tw

a
chordwise velocity due to the large values of 7%%- and A similar

phenomena, has been observed in certain exact solutions of wedge-type
flows (ref. 17).
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